具有時變時滯的Lur’e系統的新的同步條件Novel synchronization conditions for Lur’e systems with time-varying delay
吳葉繁;熊良林;柳瑩瑩;王珍;
WU Ye-fan;XIONG Liang-lin;LIU Ying-ying;WANG Zhen;School of Mathematics and Computer Science,Yunnan Minzu University;
摘要(Abstract):
對于具有時變時滯的Lur’e系統的主從同步問題,通過構造一個新的增廣李雅普諾夫-克拉索夫斯基泛函(Lyapunov-Krasovskii functional,LKF),結合新的自由矩陣積分不等式、時滯分割技術對該泛函的導數項進行處理,得到使該系統達到同步的新的充分性條件.最后,將所得結論應用到經典的蔡氏電路分2種情況進行分析仿真,驗證所得結果的有效性和優越性.
This paper investigates the master-slave synchronization problem of Lur'e systems with time-varying delay by using feedback control. With the help of a new augmented Lyapunov-Krasovskii functional(LKF),it uses the effective free-based-matrix integral inequality and the time-delay partition method to process the relevant derivative terms,and obtains some new sufficient conditions which make the related systems synchronized. Then the validity and superiority of the proposed results are illustrated by the classic Chua's circuit in two cases.
關鍵詞(KeyWords):
Lur’e系統;主從同步;時變時滯;增廣李雅普諾夫泛函;自由矩陣不等式
Lur'e system;master-slave synchronization;time-varying delay;augmented Lyapunov functional;free-based-matrix inequality
基金項目(Foundation): 國家自然科學基金(11601474)
作者(Author):
吳葉繁;熊良林;柳瑩瑩;王珍;
WU Ye-fan;XIONG Liang-lin;LIU Ying-ying;WANG Zhen;School of Mathematics and Computer Science,Yunnan Minzu University;
Email:
DOI:
參考文獻(References):
- [1] PECORA L,CARROLL T.Synchronization in chaotic systems[J].Physical Review Letters,1990,64(8):821-824.
- [2] MKAOUAR H,BOUBAKER O.Chaos synchronization for master slave piecewise linear systems:application to Chua’s circuit[J].Communications in Nonlinear Science an Numerical Simulation,2012,17(3):1292-1302.
- [3] TAO Y,CHUA L.Impulsive stabilization for control and synchronization of chaotic systems:theory and application to secure communication[J].IEEE Transactions on Circuits and Systems I:Fundamental Theory and Applications,1997,44(10):876-988.
- [4] LI T,FEI S M,ZHU Q.Exponential synchronization of chaotic neural networks with mixed delays[J].Neurocomputing,2008,71(13-15):3005-3019.
- [5] ZHENG G,BOUTAT D.Synchronisation of chaotic systems via reduced observers[J].IET Control Theory & Applications,2011,5(2):308-314.
- [6]LI T,QIAN W,WANG T,FEI S.Further results on delay-dependent absolute and robust stability for time-delay Lur’e system[J].International Journal of Robust and Nonlinear Control,2014,24(18):3300-3316.
- [7]CHEN W,WEI D,LU X.Global exponential synchronization of nonlinear time-delay Lur’e systems via delayed impulsive control[J].Communications in Nonlinear Science and Numerical Simulation,2014,19(9):3298-3312.
- [8]ZHANG C K,JIANG L,HE Y,WU Q H,WU M.Asymptotical synchronization for chaotic Lur’e systems using sampled-data control[J].Communications in Nonlinear Science and Numerical Simulation,2013,18(10):2743-2751.
- [9]GAN Q.Synchronisation of chaotic neural networks with unknown parameters and random time-varying delays based on adaptive sampled-data control and parameter identification[J].IET Control Theory & Applications,2012,6(10):1508-1515.
- [10]GE C,ZHANG W W,LI W,SUN X C.Improved stability criteria for synchronization of chaotic Lur’e systems using sampled-data control[J].Neurocomputing,2015,151(Part 1):215-222.
- [11]ZHANG H,YE R,CAO J,ALSAEDI A.Delay-independent stability of Riemann Liouville fractional neutral-type delayed neural networks[J].Neural Processing Letters,2018,47(2):427-442.
- [12]GE C,HUA C,GUAN X.Master-slave synchronization criteria of Lur’e systems with time-delay feedback control[J].Applied Mathematics and Computation,2014,244:895-902.
- [13]Li T,YU J,WANG Z.Delay-range-dependent synchronization criterion for lur’e systems with delay feedback control[J].Communications in Nonlinear Science and Numerical Simulation,2009,14(5):1796-1803.
- [14]HAN Q.New delay-dependent synchronization criteria for Lur’e systems using time delay feedback control[J].Physics Letters A[J].2007,360(4):563-569.
- [15]LI T,SONG A,FEI S.Master-slave synchronization for delayed lur’e systems using time-delay feedback control[J].Asian Journal of Control,2011,13(6):879-892.
- [16]HAN Q.On designing time-varying delay feedback controllers for master-slave synchronization of lur’e systems[J].IEEE Transactions on Circuits and Systems I:Regular Papers,2007,54(7):1573-1583.
- [17]HE Y,WEN G,WANG Q.Delay-dependent synchronization criterion for Lur’e systems with delay feedback control[J].International Journal of Bifurcation and Chaos,2006,16(10):3087-3091.
- [18]WANG Y,XIONG L,LIU X,ZHANG H.New delay-dependent synchronization criteria for uncertain Lur’e systems via time-varying delayed feedback control[J].Journal of Nonlinear Sciences and Applications,2017,10:1927-1940.
- [19]ZHANG H,CAO J,XIONG L.Novel synchronization conditions for time-varying delayed Lur’e systems with parametric uncertainty[J].Applied Mathematics and Computation,2019,350:224-236.
- [20]YALCIN M,SUYKENS J,VANDEWALLE J.Master-slave synchronization of Lur’e systems with time-delay[J].International Journal of Bifurcation and Chaos,2001,11(6):1707-1722.
- [21]XIANG J,LI Y,WEI W.An improved condition for master-slave synchronization of lur’e systems with time-delay[J].Physics Letters A,2007,362(2-3):154-158.
- [22]WU T,XIONG L,CAO J,ZHANG H.Stochastic stability and extended dissipativity analysis for uncertain neutral systems with semi-Markovian jumping parameters via novel free matrix-based integral inequality[J],International Journal of Robust and Nonlinear Control,2019,29(9):2525-2545.
- [23]張海洋,邱志鵬,熊良林.新的Jensen 類二重積分不等式的改進[J].云南大學學報(自然科學版),2017,39(5):727-732.
- [24]CHEN W,WEI D,LU X.Global exponential synchronization of nonlinear time-delay Lur’e systems via delayed impulsive control[J].Communications in Nonlinear Science and Numerical Simulation,2014,19(9):3298-3312.
- [25]熊良林,邱潔,江濤.傳輸概率未知的具有馬爾科夫跳躍的時滯系統的時滯依賴穩定性新判據[J].云南民族大學學報(自然科學版),2012,21(5):350-355.
- [26]熊良林,張海洋,彭晨,等.Jensen 類一重積分不等式的改進[J].云南民族大學學報(自然科學版),2016,25(5):409-413.
- [27]SEURET A.,GOUAISBAUT F.Wirtinger-based integral inequality:Application to time-delay systems[J].Automatica,2013,49(9):2860-2866.
- [28]ZENG H,HE Y,WU M,SHE J.Free-matrix-based integral inequality for stability analysis of systems with time-varying delay[J].IEEE Transactions on Automatic Control,2015,60(10):2768-2772.
- [29]彭晨,熊良林,吳濤.一種改進的中立型時滯系統穩定性[J].云南民族大學學報(自然科學版),2018,27(3):222-227.
- [30]張海洋,熊良林,吳濤,等.Jensen 類二重積分不等式的改進[J].云南師范大學學報(自然科學版),2016,36(5):21-26.
- [31]SEURET A,GOUAISBAUT F.Stability of linear systems with time-varying delays using Bessel-Legendre inequalities[J].IEEE Transactions on Automatic Control,2018,63(1):225-232.
- Lur’e系統
- 主從同步
- 時變時滯
- 增廣李雅普諾夫泛函
- 自由矩陣不等式
Lur'e system - master-slave synchronization
- time-varying delay
- augmented Lyapunov functional
- free-based-matrix inequality
- 吳葉繁
- 熊良林
- 柳瑩瑩
- 王珍
WU Ye-fan- XIONG Liang-lin
- LIU Ying-ying
- WANG Zhen
- School of Mathematics and Computer Science
- Yunnan Minzu University
- 吳葉繁
- 熊良林
- 柳瑩瑩
- 王珍
WU Ye-fan- XIONG Liang-lin
- LIU Ying-ying
- WANG Zhen
- School of Mathematics and Computer Science
- Yunnan Minzu University