<listing id="kephd"></listing>
<tt id="kephd"></tt>

  • <label id="kephd"></label>
    <meter id="kephd"></meter>

    云南民族大學學報(自然科學版)

    2020, v.29;No.124(06) 614-618

    [打印本頁] [關閉]
    本期目錄(Current Issue) | 過刊瀏覽(Past Issue) | 高級檢索(Advanced Search)

    基于生物地理學優化算法的醫學圖像配準
    Medical image registration based on biogeographical optimization algorithm

    周全;于志強;
    ZHOU Quan;YU Zhi-qiang;Information and Network Center,Yunnan Minzu University;

    摘要(Abstract):

    基于信息強度的醫學圖像配準主要有相似性測度、插值計算、空間變換以及尋優算法幾個主要步驟組成.在完成醫學圖像配準的過程中,性能優異的尋優算法可以極大程度提高醫學圖像配準的配準精度和配準時間.使用了生物地理學優化算法作為優化算法,粒子群算法作為對照優化算法,在阿爾茨海默病成像計劃數據集進行了一系列的單模態剛體圖像配準實驗.實驗結果表明,算法可以有效地提升醫學圖像配準的精度與速度,魯棒性也更強.
    Medical image registration based on information intensity mainly consists of similarity measure, interpolation calculation, space transformation and optimization algorithm. In the process of medical image registration, the high-performance optimization algorithm can greatly improve the registration precision and registration time. In this paper, a series of unimodal rigid-body image registration experiments are carried out by using the biogeographical optimization algorithm and the particle swarm optimization algorithm as the control optimization algorithm in the imaging plan dataset of Alzheimer's disease. Experimental results show that this algorithm can effectively improve the accuracy and speed of medical image registration, and the robustness is also stronger.

    關鍵詞(KeyWords): 生物地理學;優化算法;醫學圖像配準
    biogeography;optimization algorithm;medical image registration

    Abstract:

    Keywords:

    基金項目(Foundation): 云南省教育廳科學研究基金(2020J0360)

    作者(Author): 周全;于志強;
    ZHOU Quan;YU Zhi-qiang;Information and Network Center,Yunnan Minzu University;

    Email:

    DOI:

    參考文獻(References):

    擴展功能
    本文信息
    服務與反饋
    本文關鍵詞相關文章
    本文作者相關文章
    中國知網
    分享
    免费资料大全